Theoretical Background

This document provides a comprehensive overview of the mathematical and physical foundations underlying the schr package. It is intended for researchers seeking a deeper understanding of the numerical methods and quantum mechanics principles implemented in the framework.

Quantum Mechanics Foundations

Hilbert Space Formalism

The state of a quantum system is represented by a vector \(|\psi\rangle\) in a complex Hilbert space \(\mathcal{H}\). For a single particle in one dimension, this is typically the space \(L^2(\mathbb{R})\) of square-integrable functions.

Inner Product:

\[\langle\psi|\phi\rangle = \int_{-\infty}^{\infty} \psi^*(x) \phi(x) \, dx\]

Normalization Condition:

\[\langle\psi|\psi\rangle = \int_{-\infty}^{\infty} |\psi(x)|^2 \, dx = 1\]

The quantity \(|\psi(x)|^2\) represents the probability density of finding the particle at position \(x\).

Operators and Observables

Physical observables correspond to Hermitian (self-adjoint) operators. Key operators include:

Position Operator:

\[\hat{x} \psi(x) = x \psi(x)\]

Momentum Operator:

\[\hat{p} \psi(x) = -i\hbar \frac{\partial\psi}{\partial x}\]

Hamiltonian (Energy) Operator:

\[\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}, t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x, t)\]

Expectation Values:

The expected value of an observable \(\hat{A}\) in state \(|\psi\rangle\):

\[\langle\hat{A}\rangle = \langle\psi|\hat{A}|\psi\rangle = \int_{-\infty}^{\infty} \psi^*(x) \hat{A} \psi(x) \, dx\]

Time Evolution

Time-Dependent Schrödinger Equation (TDSE)

The evolution of quantum states is governed by the TDSE:

\[i\hbar \frac{\partial|\psi(t)\rangle}{\partial t} = \hat{H}|\psi(t)\rangle\]

In position representation:

\[i\hbar \frac{\partial\psi(x,t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x,t)\right] \psi(x,t)\]

Formal Solution:

For time-independent Hamiltonians, the formal solution is:

\[|\psi(t)\rangle = e^{-i\hat{H}t/\hbar}|\psi(0)\rangle = \hat{U}(t)|\psi(0)\rangle\]

where \(\hat{U}(t) = e^{-i\hat{H}t/\hbar}\) is the unitary time evolution operator.

Conservation Laws

Probability Conservation:

\[\frac{d}{dt}\int_{-\infty}^{\infty}|\psi(x,t)|^2\,dx = 0\]

Energy Conservation (time-independent H):

\[\frac{d}{dt}\langle\hat{H}\rangle = 0\]

Numerical Methods

Split-Step Fourier Method

The split-step Fourier method (SSFM) is a pseudo-spectral technique for solving the TDSE. It exploits the fact that kinetic and potential operators are simple in different representations.

Operator Splitting

The Hamiltonian is split into kinetic and potential parts:

\[\hat{H} = \hat{T} + \hat{V}\]

where

\[\hat{T} = -\frac{\hbar^2}{2m}\nabla^2, \quad \hat{V} = V(\mathbf{r}, t)\]

The evolution operator is approximated using the Strang splitting formula:

\[e^{-i\hat{H}\Delta t/\hbar} \approx e^{-i\hat{V}\Delta t/(2\hbar)} \, e^{-i\hat{T}\Delta t/\hbar} \, e^{-i\hat{V}\Delta t/(2\hbar)} + O(\Delta t^3)\]

This is a symmetric splitting, providing second-order accuracy in time.

Implementation

Step 1: Half potential step (position space)

\[\psi_1(\mathbf{r}) = e^{-iV(\mathbf{r},t)\Delta t/(2\hbar)} \, \psi(\mathbf{r}, t)\]

Step 2: Kinetic step (momentum space)

Transform to momentum space via FFT:

\[\tilde{\psi}_1(\mathbf{k}) = \mathcal{F}[\psi_1(\mathbf{r})]\]

Apply kinetic evolution:

\[\tilde{\psi}_2(\mathbf{k}) = e^{-i\hbar k^2\Delta t/(2m)} \, \tilde{\psi}_1(\mathbf{k})\]

Transform back to position space:

\[\psi_2(\mathbf{r}) = \mathcal{F}^{-1}[\tilde{\psi}_2(\mathbf{k})]\]

Step 3: Half potential step (position space)

\[\psi(\mathbf{r}, t+\Delta t) = e^{-iV(\mathbf{r},t+\Delta t)\Delta t/(2\hbar)} \, \psi_2(\mathbf{r})\]

Advantages

  1. Spectral accuracy in space: FFT provides exponential convergence for smooth functions

  2. Explicit method: No matrix inversion required

  3. Unconditionally stable: Preserves unitarity

  4. Efficient: \(O(N\log N)\) complexity per time step

  5. Automatic boundary conditions: Periodic boundaries from FFT

Stability and Accuracy

CFL Condition:

For stability, the time step should satisfy:

\[\Delta t < \frac{2\pi\hbar m}{k_{\max}^2} = \frac{2\pi\hbar m\Delta x^2}{\pi^2}\]

where \(k_{\max} = \pi/\Delta x\) is the Nyquist wavevector.

Spatial Resolution:

To accurately resolve features with characteristic momentum \(k_0\):

\[\Delta x < \frac{\pi}{k_0}\]

A typical choice is \(\Delta x = \lambda/10\) where \(\lambda = 2\pi/k_0\).

Fourier Transform Conventions

The package uses the following Fourier transform conventions:

Forward Transform:

\[\tilde{\psi}(k) = \mathcal{F}[\psi(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi(x) e^{-ikx} \, dx\]

Inverse Transform:

\[\psi(x) = \mathcal{F}^{-1}[\tilde{\psi}(k)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \tilde{\psi}(k) e^{ikx} \, dk\]

Discrete Fourier Transform (DFT):

For a grid with \(N\) points and spacing \(\Delta x\):

\[\tilde{\psi}_k = \sum_{n=0}^{N-1} \psi_n e^{-2\pi ikn/N}\]

The momentum grid is:

\[\begin{split}k_j = \begin{cases} \dfrac{2\pi j}{N\Delta x} & 0 \leq j \leq N/2 \\[8pt] \dfrac{2\pi (j-N)}{N\Delta x} & N/2 < j < N \end{cases}\end{split}\]

Parseval’s Theorem (Norm Conservation):

\[\int_{-\infty}^{\infty} |\psi(x)|^2 \, dx = \int_{-\infty}^{\infty} |\tilde{\psi}(k)|^2 \, dk\]

This ensures probability conservation in both representations.

Momentum Operator in Fourier Space

The momentum operator becomes multiplicative in Fourier space:

\[\mathcal{F}[\hat{p}\psi(x)] = \mathcal{F}\left[-i\hbar \frac{\partial\psi}{\partial x}\right] = \hbar k \, \tilde{\psi}(k)\]

Similarly, the kinetic energy operator:

\[\mathcal{F}\left[\frac{\hat{p}^2}{2m}\psi(x)\right] = \frac{\hbar^2 k^2}{2m} \, \tilde{\psi}(k)\]

This is the basis for the efficient SSFM implementation.

Runge-Kutta Methods

The package also implements fourth-order Runge-Kutta (RK4) integration as an alternative solver.

RK4 Algorithm:

To solve \(\partial_t|\psi\rangle = -i\hat{H}|\psi\rangle/\hbar\):

\[\begin{split}\begin{aligned} k_1 &= -\frac{i}{\hbar}\hat{H}|\psi(t)\rangle \\ k_2 &= -\frac{i}{\hbar}\hat{H}\left(|\psi(t)\rangle + \Delta t k_1/2\right) \\ k_3 &= -\frac{i}{\hbar}\hat{H}\left(|\psi(t)\rangle + \Delta t k_2/2\right) \\ k_4 &= -\frac{i}{\hbar}\hat{H}\left(|\psi(t)\rangle + \Delta t k_3\right) \\ |\psi(t+\Delta t)\rangle &= |\psi(t)\rangle + \frac{\Delta t}{6}(k_1 + 2k_2 + 2k_3 + k_4) \end{aligned}\end{split}\]

Advantages: General-purpose, handles non-separable Hamiltonians.

Disadvantages: \(O(N^2)\) for finite-difference derivatives, doesn’t preserve unitarity exactly.

Boundary Conditions

Absorbing Boundary Conditions

For open quantum systems, absorbing boundaries prevent unphysical reflections at domain edges.

Polynomial Mask Method

Multiply the wavefunction by a smooth mask function:

\[\psi(x, t+\Delta t) \rightarrow \mathcal{M}(x)\psi(x, t+\Delta t)\]

where

\[\begin{split}\mathcal{M}(x) = \begin{cases} \cos^n\left(\dfrac{\pi(x - x_0)}{2w}\right) & x_0 < x < x_0 + w \\[8pt] 1 & \text{interior} \\[8pt] \cos^n\left(\dfrac{\pi(x - x_1)}{2w}\right) & x_1 - w < x < x_1 \end{cases}\end{split}\]

Here \(n\) is the order (typically 4-8) and \(w\) is the absorption layer width.

Properties:

  • Smooth transition minimizes reflections

  • Higher \(n\) gives sharper absorption

  • Width \(w\) should be several wavelengths

Complex Absorbing Potential (CAP)

Add an imaginary potential in the absorption region:

\[V(x) \rightarrow V(x) - i\alpha f(x)\]

where \(f(x)\) is a smooth function (e.g., polynomial or exponential) near boundaries.

Effect: Exponentially damps the wavefunction amplitude:

\[\psi(x,t) \sim e^{-\alpha t/\hbar}\psi_0(x)\]

Periodic Boundary Conditions

The FFT naturally imposes periodic boundary conditions:

\[\psi(x + L) = \psi(x)\]

where \(L = N\Delta x\) is the domain length. Useful for:

  • Plane wave states

  • Bloch states in periodic potentials

  • Systems with periodic symmetry

Quantum Electrodynamics

Second Quantization

Photon Field Quantization

The electromagnetic field is quantized in terms of photon creation and annihilation operators:

\[\hat{a}_i, \quad \hat{a}_i^\dagger\]

satisfying the commutation relations:

\[[\hat{a}_i, \hat{a}_j^\dagger] = \delta_{ij}, \quad [\hat{a}_i, \hat{a}_j] = 0\]

Number States:

The Fock space is spanned by number states \(|n_1, n_2, \ldots, n_M\rangle\) where \(n_i\) is the number of photons in mode \(i\).

Action of Operators:

\[\begin{split}\begin{aligned} \hat{a}_i^\dagger|n_i\rangle &= \sqrt{n_i + 1}|n_i + 1\rangle \\ \hat{a}_i|n_i\rangle &= \sqrt{n_i}|n_i - 1\rangle \\ \hat{n}_i &= \hat{a}_i^\dagger\hat{a}_i, \quad \hat{n}_i|n_i\rangle = n_i|n_i\rangle \end{aligned}\end{split}\]

Free Field Hamiltonian

\[\hat{H}_{\text{field}} = \sum_{i=1}^{M} \hbar\omega_i\left(\hat{a}_i^\dagger\hat{a}_i + \frac{1}{2}\right)\]

where \(\omega_i\) is the frequency of mode \(i\).

Light-Matter Interaction

Jaynes-Cummings Model

The JC model describes a two-level atom coupled to a single cavity mode:

\[\hat{H}_{\text{JC}} = \frac{\hbar\omega_a}{2}\hat{\sigma}_z + \hbar\omega_c \hat{a}^\dagger\hat{a} + \hbar g(\hat{\sigma}_+\hat{a} + \hat{\sigma}_-\hat{a}^\dagger)\]

where:

  • \(\omega_a\) is the atomic transition frequency

  • \(\omega_c\) is the cavity mode frequency

  • \(g\) is the coupling strength

  • \(\hat{\sigma}_z = |e\rangle\langle e| - |g\rangle\langle g|\) is the Pauli z operator

  • \(\hat{\sigma}_\pm = \dfrac{1}{2}(\hat{\sigma}_x \pm i\hat{\sigma}_y)\) are raising/lowering operators

Rotating Wave Approximation (RWA):

The terms \(\hat{\sigma}_+\hat{a}^\dagger\) and \(\hat{\sigma}_-\hat{a}\) are neglected (counter-rotating terms) when \(g \ll \omega_a, \omega_c\).

Physical Phenomena:

  • Rabi Oscillations: Periodic energy exchange between atom and field

  • Vacuum Rabi Splitting: Energy level splitting in strong coupling regime

  • Collapse and Revival: In multi-photon states, non-classical dynamics

Dipole Interaction

For a particle with charge \(q\) interacting with the electromagnetic field:

\[\hat{H}_{\text{int}} = -q\hat{\mathbf{r}} \cdot \hat{\mathbf{E}}(\mathbf{r}, t)\]

where \(\hat{\mathbf{E}}\) is the quantized electric field operator.

In the dipole approximation (wavelength \(\gg\) atomic size):

\[\hat{\mathbf{E}}(\mathbf{r}, t) \approx \hat{\mathbf{E}}(\mathbf{r}_0, t) = i\sum_i\sqrt{\frac{\hbar\omega_i}{2\epsilon_0 V}} \left(\hat{a}_i e^{-i\omega_i t} - \hat{a}_i^\dagger e^{i\omega_i t}\right) \hat{\mathbf{e}}_i\]

where \(\hat{\mathbf{e}}_i\) is the polarization vector.

Fock Space Truncation

In numerical simulations, the infinite-dimensional Fock space is truncated:

\[\mathcal{H} \approx \text{span}\{|n_1, \ldots, n_M\rangle : 0 \leq n_i \leq N_{\max}\}\]

Dimension:

For \(M\) modes with maximum \(N_{\max}\) photons each:

\[\dim(\mathcal{H}) = (N_{\max} + 1)^M\]

Convergence:

Results should be checked for convergence with respect to \(N_{\max}\). Typically \(N_{\max} = 10-50\) is sufficient for weak-to-moderate coupling.

Example Systems

Harmonic Oscillator

The 1D quantum harmonic oscillator has Hamiltonian:

\[\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2\]

Energy Eigenvalues:

\[E_n = \hbar\omega\left(n + \frac{1}{2}\right), \quad n = 0, 1, 2, \ldots\]

Eigenfunctions:

\[\psi_n(x) = \frac{1}{\sqrt{2^n n!}}\left(\frac{m\omega}{\pi\hbar}\right)^{1/4}e^{-m\omega x^2/(2\hbar)}H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right)\]

where \(H_n\) are Hermite polynomials.

Coherent States:

Displaced Gaussian wavepackets are approximate eigenstates of the annihilation operator:

\[\hat{a}|\alpha\rangle = \alpha|\alpha\rangle\]

with \(|\alpha\rangle = e^{-|\alpha|^2/2}\sum_{n=0}^\infty \frac{\alpha^n}{\sqrt{n!}}|n\rangle\).

Tunneling Through a Barrier

Rectangular Barrier

Potential:

\[\begin{split}V(x) = \begin{cases} V_0 & 0 < x < a \\ 0 & \text{otherwise} \end{cases}\end{split}\]

For \(E < V_0\), the transmission coefficient is:

\[T = \frac{1}{1 + \dfrac{V_0^2\sinh^2(\kappa a)}{4E(V_0 - E)}}\]

where \(\kappa = \sqrt{2m(V_0 - E)}/\hbar\).

Tunneling Time:

The time for a wavepacket to tunnel through is approximately:

\[\tau \sim \frac{ma}{\hbar\kappa}\]

Double-Slit Interference

Physical Parameters

  • Slit separation: \(d\)

  • Slit width: \(w\)

  • Wavelength: \(\lambda = 2\pi/k\)

  • Screen distance: \(L\)

Fringe Spacing:

For \(w \ll d \ll L\):

\[\Delta y = \frac{\lambda L}{d}\]

Visibility:

The fringe visibility depends on the coherence length \(\ell_c\):

\[V = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}} \approx e^{-d^2/(2\ell_c^2)}\]

For Gaussian wavepackets, \(\ell_c \sim \sigma\) (wavepacket width).

Atomic Units

Fundamental Constants

Constant

Symbol

Value (SI)

Bohr radius

\(a_0\)

\(5.291772 \times 10^{-11}\) m

Hartree energy

\(E_h\)

\(4.359744 \times 10^{-18}\) J = 27.211 eV

Atomic time unit

\(\hbar/E_h\)

\(2.418884 \times 10^{-17}\) s

Electron mass

\(m_e\)

\(9.109384 \times 10^{-31}\) kg

Elementary charge

\(e\)

\(1.602176 \times 10^{-19}\) C

Unit Conversions

Length:

\[1\,a_0 = 0.05292\,\text{nm}\]

Energy:

\[1\,E_h = 27.211\,\text{eV} = 4.360\times 10^{-18}\,\text{J}\]

Time:

\[1\,\hbar/E_h = 24.19\,\text{as} = 2.419\times 10^{-17}\,\text{s}\]

Electric Field:

\[1\,E_h/(ea_0) = 5.142\times 10^{11}\,\text{V/m}\]

Example: Hydrogen Ground State

In atomic units:

  • Energy: \(E_0 = -0.5\,E_h = -13.6\,\text{eV}\)

  • Bohr radius: \(a_0 = 1\,a_0\)

  • Wavefunction: \(\psi_{100}(r) = \frac{1}{\sqrt{\pi}}e^{-r}\)

Numerical Considerations

Discretization Errors

Spatial Discretization:

FFT-based methods have spectral accuracy for smooth functions:

\[\epsilon_{\text{space}} \sim e^{-\alpha N}\]

for some \(\alpha > 0\). However, discontinuities cause Gibbs oscillations.

Temporal Discretization:

For the split-step method:

\[\epsilon_{\text{time}} \sim C\Delta t^3\]

where \(C\) depends on potential derivatives.

Aliasing

High-frequency components can alias to low frequencies due to finite grid spacing. To avoid:

  1. Ensure wavepacket has negligible amplitude at \(k > k_{\text{Nyquist}} = \pi/\Delta x\)

  2. Filter high-frequency components if necessary

  3. Use sufficiently fine grid: \(\Delta x < \lambda_{\min}/10\)

Memory and Performance

Memory Scaling:

  • 1D: \(O(N)\) complex numbers

  • 2D: \(O(N^2)\) complex numbers

  • 3D: \(O(N^3)\) complex numbers

With complex64 (8 bytes each), a \(1024^3\) 3D grid requires ~8 GB.

Computational Complexity:

Per time step:

  • FFT: \(O(N^d \log N)\) where \(d\) is dimension

  • Potential application: \(O(N^d)\)

GPU acceleration provides 10-100× speedup over CPU for large grids.